43 research outputs found

    A Wearable Device For Physical and Emotional Health Monitoring

    Get PDF
    Personal health monitoring systems are emerging as promising solutions to develop ultra-small, portable devices that can continuously monitor and process several vital body parameters. In this work, we present a wearable device for physical and emotional health monitoring. The device obtains user’s key physiological signals: ECG, respiration, Impedance Cardiogram (ICG), blood pressure and skin conductance and derives the user’s emotion states as well. We have developed embedded algorithms that process the bio-signals in real-time to detect any abnormalities (cardiac arrhythmias and morphology changes) in the ECG and to detect key parameters (such as the Pre- Ejection Period and fluid status level) from the ICG. We present a novel method to detect continuous beat-by-beat blood pressure from the ECG and ICG signals, as well as a realtime embedded emotion classifier that computes the emotion levels of the user. Emotions are classified according to their attractiveness (positive valence) or their averseness (negative valence) in the horizontal valence dimension. The excitement level induced by the emotions is represented by high to low positions in the vertical arousal dimension of the valence-arousal space. The signals are measured either intermittently by touching the metal electrodes on the device (for point-of-care testing) or continuously, using a chest strap for long term monitoring. The processed data from device is sent to a mobile phone using a Bluetooth Low Energy protocol. Our results show that the device can monitor the signals continuously, providing accurate detection of the motion state, for over 72 hours on a single battery charge

    Energy-Aware Embedded Classifier Design for Real-Time Emotion Analysis

    Get PDF
    Detection and classification of human emotions from multiple bio-signals has a wide variety of applications. Though electronic devices are available in the market today that acquire multiple body signals, the classification of human emotions in real-time, adapted to the tight energy budgets of wearable embedded systems is a big challenge. In this paper we present an embedded classifier for real-time emotion classification. We propose a system that operates at different energy budgeted modes, depending on the available energy, where each mode is constrained by an operating energy bound. The classifier has an offline training phase where feature selection is performed for each operating mode, with an energy-budget aware algorithm that we propose. Across the different operating modes, the classification accuracy ranges from 95% - 75% and 89% - 70% for arousal and valence respectively. The accuracy is traded off for less power consumption, which results in an increased battery life of up to 7.7 times (from 146.1 to 1126.9 hours)

    Real-Time Probabilistic Heart Beat Classification and Correction for Embedded Systems

    Get PDF
    With the emergence of wearable and non-intrusive med- ical devices, one major challenge is the real-time analysis of the acquired signals in real-life and ambulatory con- ditions. This paper presents a lightweight algorithm for on-line heart beat classification and correction that relies on a probabilistic model to determine whether a heart beat is likely to happen under certain timing conditions or not. It can quickly decide if a beat is occurring at an expected time or if there is a problem in the series (e.g., a skipped, an extra or a misplaced beat). If an error is detected, the series is repaired accordingly. The algorithm has been carefully optimized to minimize the required processing power and memory usage in order to enable its real-time embedded implementation on a wearable sensing device. Our experimental results, based on the PhysioNet Fanta- sia database, show that the proposed algorithm achieves 99.5% sensitivity in the detection and correction of erro- neous beats. In addition, it features a fast response time when the activity level of the user changes, thus enabling its use in situations where the heart rate quickly changes

    Design of Ultra-Low-Power Smart Wearable Systems

    Get PDF
    Latest progress in microelectronics have enabled a new generation of low cost, low power, miniaturized, yet, smart sensor nodes. This new generation of wearable sensor nodes promise to deploy automated complex bio-signals analysis. In this paper, we present INYU, a wearable sensor device for physical and emotional health monitoring. The device obtains key vital signs of the user, namely Electrocardiogram (ECG), respiration and skin conductance continuously. Using this information, INYU can deliver a novel real-time algorithm for on-line heart-beat classification and correction that relies on a probabilistic model to determine whether a heartbeat is likely to happen under certain timing conditions. Thus, using this algorithm INYU can quickly decide if a beat is occurring at an expected time or if there is a problem in the series (e.g., a skipped, an extra or a misplaced beat). This new algorithm has been integrated in the processing pipeline of automated Heart-Rate Variability (HRV) analysis, both for time-domain (RMSSD, SDNN) and frequency-domain (LF/HF) algorithms

    Estimation of Blood Pressure and Pulse Transit Time Using Your Smartphone

    Get PDF
    It is widely recognized today that there is an alarming rise of lifestyle-induced chronic diseases (e.g., type II diabetes) in our society. Therefore, a strong need exists for cost-effective and non-invasive devices that can measure blood pressure (BP) to monitor, diagnose and follow-up patients at risk, but also healthy population in general. One promising method for arterial BP estimation is to measure a surrogate marker of it, such as, Pulse Transit Time (PTT) and derive pressure values from it. However, current methods for measuring PTT require complex sensing and analysis circuitry and the related medical devices are expensive and inconvenient for the user to wear. In this paper, we present a new smartphone-based method to estimate PTT reliably and subsequently BP from the baseline sensors on smartphones. This new approach involves determining PTT by simultaneously measuring the time the blood leaves the heart, by recording the heart sound using the standard microphone of the phone and the time it reaches the finger, by measuring the pulse wave using the phone’s camera. Moreover, we also describe algorithms that can be executed directly on current smartphones to obtain clean and robust heart sound signals and to extract the pulse wave characteristics using smartphones. We also present methods to ensure a synchronous capture of the waveforms, which is essential to obtain reliable PTT values with inexpensive sensors. Our experiments show that the computational overhead of the proposed two-phase processing method is minimum, with the ability to reliably measure the PTT values in a fully accurate (beat-to-beat) fashion using directly state-of-the-art smartphones as medical devices

    Embedded Real-Time ECG Delineation Methods: a Comparative Evaluation

    Get PDF
    Wireless sensor nodes (WSNs) have recently evolved to include a fair amount of computational power, so that advanced signal processing algorithms can now be embedded even in this extremely low-power platforms. An increasingly successful field of application of WSNs is tele-healthcare, which enables continous monitoring of subjects, even outside a medical environment. In particular, the design of solutions for automated and remote electrocardiogram (ECG) analysis have attracted considerable research interest in recent years, and different algorithms for delineation of normal and pathological heart rhythms have been proposed. In this paper, some of the most promising techniques for filtering and delinations of ECG signals are explored and comparatively evaluated, describing their implementation on the state-of-the-art IcyHeart WSN. The goal of this paper is to explore the trade-offs implied in the different settings and the impact of design choices for implementing “smart” WSNs dedicated to monitoring ECG bio-signal

    Methods for reliable estimation of pulse transit time and blood pressure variations using smartphone sensors

    Get PDF
    Hypertension is known to affect around one third of adults globally and early diagnosis is essential to reduce the effects of this affliction. Today’s Blood Pressure (BP) monitoring cuffs are obtrusive and in- convenient for performing regular measurements, and continuous non-invasive blood pressure devices are too complex and expensive for ambulatory use. Hence, there is a strong need for affordable systems that can measure blood pressure (BP) variations throughout the day as this will allow to monitor, diagnose and follow-up not only patients at risk, but also healthy population in general for early diagnosis. A promising method for arterial BP estimation is to measure the Pulse Transit Time (PTT) and derive pres- sure values from it. However, current methods for measuring this surrogate marker of BP require com- plex sensing and analysis circuitry and the related medical devices are expensive and inconvenient for the user. In this paper, we present new methods to estimate PTT reliably and subsequently BP, from the baseline sensors of smartphones. This new approach involves determining PTT by simultaneously mea- suring the time the blood leaves the heart, by recording the heart sound using the standard microphone of the phone, and the time it reaches the finger, by measuring the pulse wave using the phone’s camera. We present algorithms that can be executed directly on current smartphones to obtain clean and robust heart sound signals and to extract the pulse wave characteristics. We also present methods to ensure a synchronous capture of the waveforms, which is essential to obtain reliable PTT values with inexpen- sive sensors. Additionally, we combine Autocorrelation and Fast Fourier Transform (FFT)-based methods for reliably estimating the user heart rate (HR) from his/her heart sounds, and describe how to use the calculate HR to compensate for the camera frame rate variations and to improve the robustness of PTT estimation. Our experiments show that the computational overhead of the proposed processing meth- ods is minimum, which allows real-time feedback to the user, and that the PTT values are fully accurate (beat-to-beat), thereby enabling state-of-the-art smartphones to be used as affordable medical devices

    Development and Evaluation of Multi-Lead Wavelet-Based ECG Delineation Algorithms for Embedded Wireless Sensor Nodes

    Get PDF
    This work is devoted to the evaluation of multilead digital wavelet transform (DWT)-based electrocardiogram (ECG) wave delineation algorithms, which were optimized and ported to a commercial wearable sensor platform. More specifically, we investigate the use of root-mean squared (RMS)-based multi-lead followed by a single-lead online delineation algorithm, which is based on a state-of-the-art offline singlelead delineator. The algorithmic transformations and software optimizations necessary to enable embedded ECG delineation notwithstanding the limited processing and storage resources of the target platform are described, and the performance of the resulting implementations are analyzed in terms of delineation accuracy, execution time and memory usage. Interestingly, RMS-based multi-lead delineation is shown to perform equivalently to the best single-lead delineation for the 2-lead QT database (QTDB), within a fraction of a sample duration of the Common Standards for Electrocardiography (CSE) committee tolerances. Finally, a comprehensive evaluation of the energy consumption entailed by the considered algorithms is proposed, which allows very relevant insights into the dominant energy-draining functionalities and which suggests suitable design guidelines for longlasting wearable ECG monitoring systems

    Online Obstructive Sleep Apnea Detection on Medical Wearable Sensors

    Get PDF
    Obstructive Sleep Apnea (OSA) is one of the main under-diagnosed sleep disorder. It is an aggravating factor for several serious cardiovascular diseases, including stroke. There is, however, a lack of medical devices for long-term ambulatory monitoring of OSA since current systems are rather bulky, expensive, intrusive, and cannot be used for long-term monitoring in ambulatory settings. In this paper, we propose a wearable, accurate, and energy efficient system for monitoring obstructive sleep apnea on a long-term basis. As an embedded system for Internet of Things (IoT), it reduces the gap between home health-care and professional supervision. Our approach is based on monitoring the patient using a single-channel electrocardiogram (ECG) signal. We develop an efficient time-domain analysis to meet the stringent resources constraints of embedded systems to compute the sleep apnea score. Our system, for a publicly available database (PhysioNet Apnea-ECG), has a classification accuracy of up to 88.2% for our new online and patient-specific analysis, which takes the distinct profile of each patient into account. While accurate, our approach is also energy efficient and can achieve a battery lifetime of 46 days for continuous screening of OSA

    A modular low-complexity ECG delineation algorithm for real-time embedded systems

    Get PDF
    This work presents a new modular and lowcomplexity algorithm for the delineation of the different ECG waves (QRS, P and T peaks, onsets and end). Involving a reduced number of operations per second and having a small memory footprint, this algorithm is intended to perform realtime delineation on resource-constrained embedded systems. The modular design allows the algorithm to automatically adjust the delineation quality in run time to a wide range of modes and sampling rates, from a Ultra-low power mode when no arrhythmia is detected, in which the ECG is sampled at low frequency, to a complete High-accuracy delineation mode in which the ECG is sampled at high frequency and all the ECG fiducial points are detected, in case of arrhythmia. The delineation algorithm has been adjusted using the QT database, providing very high sensitivity and positive predictivity, and validated with the MIT database. The errors in the delineation of all the fiducial points are below the tolerances given by the Common Standards for Electrocardiography (CSE) committee in the High-accuracy mode, except for the P wave onset, for which the algorithm is above the agreed tolerances by only a fraction of the sample duration. The computational load for the ultra-low-power 8-MHz TI MSP430 series microcontroller ranges from 0.2 to 8.5% according to the mode used
    corecore